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Abstract. The onset of chaotic behaviour and space patterning in chemically reacting systems 
is analysed. Special emphasis is placed on the specificities of chemical dynamics as compared 
to other branches of physical sciences giving rise to chaos and self-organization and on the 
role of the size of the system as a universal bifurcation parameter. 

1. Introduction 

It is by now well established that, when operating under far-from-equilibrium 
constraints, large classes of chemical reactions may give rise to a variety of complex 
phenomena such as periodic, quasi-periodic and chaotic oscillations and spatial or spatio- 
temporal patterns [ 1,2] .  In this paper we survey progress achieved in recent years in the 
understanding of this behaviour. 

In order to focus on phenomena arising entirely from the chemical kinetics, we shall 
limit ourselves to isothermal systems in mechanical equilibrium and discard, therefore, 
heat transfer and hydrodynamic motion. The resulting system is described to a very good 
approximation by the reaction-diffusion equations, 

ax,/at = u , ( X , ,  . . . , x,l; A, , U , .  * . )  + DiV*X,  (i = 1, .  . . . n )  (1) 

where X ,  is a set of variables describing the composition of the mixture; u, is the rate of 
a change of X ,  due to the chemical reactions; A, p ,  . . . are parameters (rate constants 
etc) built in the system; and D, is the diffusion coefficient of species i in the medium (for 
simplicity cross-diffusion effects are neglected, a restriction that is valid as long as the 
reacting mixture behaves as an ideal system). It is through this latter coefficient as well 
as through the parameters A, p ,  . . . that the nature of the host medium, and particularly 
the possibility of it being in the liquid state, is likely to affect the behaviour of our 
reaction-diffusion system. 

There are two important features of equations (1) that make chemical kinetics special 
among other fields of physical sciences. 

(i) U ,  are, typically, non-linear functions of the composition variables owing to the 
presence of cooperative effects like autocatalysis or inhibition, which are ubiquitous in 
chemistry. These effects are acting spontaneously everywhere in the system. They 
therefore subsist in the limit of a uniform medium. in which diffusion can be discarded. 
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This latter limit can be achieved in the laboratory through an effective stirring mechan- 
ism. Equations (1) reduce then to a system of non-linear ODES 

dX,/dt = u i ( X I r .  . . , X , ;  A, p ,  . . . ) 

which contain practically all the tremendous variety of complex behaviour suggested 
by the mathematical analysis of non-linear dynamical systems with a small number of 
degrees of freedom [3]. In other words, complexity in chemistry is not necessarily 
induced by the spatial degrees of freedom like in hydrodynamics: it may arise solely 
from the intrinsic non-linearities of the kinetics. Furthermore, chemical dynamics is 
generated by purely dissipative processes, in contrast to hydrodynamics or electro- 
magnetic processes where inertia plays an important role. In short, chemical reactions 
provide one of the few authentic physical illustrations of low-dimensional dissipative 
dynamical systems. 

(ii) Suppose next that the system is not stirred: diffusion is automatically switched 
on, andstatescorresponding to aninhomogeneousdistributionofX, in space are created. 
Before attempting any quantitative evaluation of the properties of such states, let us 
follow a simple dimensional argument. Among the parameters present in equations (l), 
let us focus our attention on a typical diffusion coefficient, D, and a typical rate constant, 
k .  From these two quantities we can construct a combination I ,  = (D/k ) ’ / ’  having the 
dimensionsof length and being of completely intrinsicorigin. Thissuggests that reaction- 
diffusion systems should be capable of undergoing spontaneous symmetry-breaking 
transitions leading to states endowed with intrinsic characteristic lengths. This is to be 
contrasted with hydrodynamics where length scales involve, among other factors, the 
system size. 

Having identified the main features that distinguish reaction-diffusion systems from 
other systems giving rise to bifurcations and non-linear dynamics, we shall now proceed 
to a brief account of some selected topics, by placing special emphasis on open questions 
and recent developments. We shall deal, successively, with mixed-mode oscillations and 
homoclinic chaos in well-stirred systems; symmetry breaking and pattern formation in 
spatially distributed systems; and the microscopic aspects of chemical instabilities. 

2. Mixed-mode oscillations and homoclinic chaos in well-stirred systems 

When a chemical reaction takes place in an open, well-stirred reactor, the time evolution 
of the concentration is described by a system of non-linear first-order ODES (equation 
(2)). In this case the evolution can be embedded in a finite-dimensional phase space of 
dimension equal to the number of chemical species involved in the reaction. The 
advances of computer technology, in particular the advent of graphic terminal tech- 
nology on the one hand, and phase space methods on the other, have led to important 
progress in the analysis of far-from-equilibrium chemical reactions in time-dependent 
dynamical regimes which have been classified into periodic, quasiperiodic and chaotic 
behaviour. Moreover several bifurcation mechanisms for transition from periodic to 
chaotic behaviour have been observed and studied in detail such as the Feigenbaum 
period doubling cascade, the intermittency transition, the quasiperiodic route to chaos 
and the homoclinic tangencies. The latter, discovered in the mid-sixties and early 
seventies by Sil’nikov and co-workers [4], have in fact been among the first known 
examples of bifurcations leading to chaos. 
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Figure 1. Phase portrait of a homoclinic tangency to a saddle focus (0) in a three-dimensional 
phase space, before (,U < pF,). at ( p  = pH) and after ( p  > ,uH) the bifurcation. W, and W, are 
the stable and unstable manifolds of (0). The homoclinic orbit (H) exists at the tangency 
( P  = PI,). 

Homoclinic tangencies are very common in low-dimensional ODES, in particular in 
chemical kinetics. A homoclinic tangency will occur in the phase space if two conditions 
are satisfied: 

(i) There exists an invariant set, i.e. a fixed point, a periodic orbit or a Cantor set of 
orbits, that is of the saddle type. Accordingly trajectories escape from the invariant set 
along the unstable manifold while other trajectories are convergent to the invariant set 
along the stable manifold. 

(ii) The unstable manifold is tangential to the stable manifold at a critical parameter 
value p = vH. 

This latter condition implies that bifurcations occur in the vicinity of a homoclinic 
tangency. Not all homoclinic tangencies lead to chaotic behaviour. For instance, when 
a tangency occurs in two dimensions it generates a single periodic orbit. However, 
general conditions for emergence of homoclinic chaos have been proved. We shall now 
turn to a description of some typical results, taking as an illustrative example the case of 
homoclinic orbits associated with a fixed point in a system involving three variables. 

The geometry of this homoclinic bifurcation is depicted in figure 1. We assume that 
there exists a fixed point which is a saddle-focus with linear stability eigenvalues 
( p  * iw, A) .  The stable manifold is two-dimensional while the unstable one is one- 
dimensional. At the critical parameter value p = pH, the unstable manifold is included 
into the stable one and forms the homoclinic orbit. However, this situation breaks down 
away from criticality, We then have the following general results [4-61: 

(i) Sil'nikov theorem: provided Ip/A I < 1, there exist uncountably many non-periodic 
orbits. 

(ii) As shown in figure 2, the orbits successively perform ( .  . . , P I - ' ,  p ' ,  p'", . . . )  
half-turns around the saddle-focus, interrupted by bursts. Accordingly, they were named 
mixed-mode oscillations because they are composed of a mixture of small peaks followed 
by a large peak. The time spent between two bursts is z' = npl/w + zH where zH is the 
time for a burst. Most of these orbits are chaotic, but there also exist single-circuit 
periodicorbitsofthetype(. . . , p , p , p , .  . . )andofperiodT = np/w + t,.Theseorbits 
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oscillations ( p ‘ )  are interrupted by bursts, forming 
a random sequence of time intervals ( ~ ‘ 1 .  The 
bursts correspond to a circuit in the vicinity of the 

1 1  able x ( t )  in Sil’nikov chaos. The small growing 

t underlying homoclinic orbit. 

are of relaxation type and are very different from the quasi-sinusoidal oscillations born 
in the Hopf bifurcation. 

(iii) The above single-circuit periodic orbits appear in pairs via tangent bifurcations. 
The bifurcation points { p ; }  accumulate geometrically to p = pH according to 

and their period increases to infinity a s p  + pH. 

Remarks 
(a) Sil’nikov’s homoclinicity to a saddle focus is generic in two-parameter space near 

a doubly degenerate bifurcation of a fixed point with eigenvalues (? io ,  0) in the case 
where the co-dimension two vector field is described by the normal form 

q = i o q  + ((U + i/3)zq + O(3) i = - z 2  - 1412 + O(3) 

where q = x + iy and 0 < (U < 2. Topological chaos is thus allowed arbitrarily close to 
the critical vector field, together with the aforementioned bifurcations. 

(b )  The bifurcation accumulation rate (3) at the homoclinic tangency is to be com- 
pared with the accumulation rate of period doublings in the Feigenbaum cascade where 

= 4.6692016. . . P n  - P n - 1  

n + x  P n + 1  - P n  
lim (4) 

which is a universal number [7]. In contrast, the quantitative features of the homoclinic 
tangency depend on the eigenvalues of the saddle-focus. 

Sil’nikov homoclinic tangency (and its heteroclinic variant) has been observed in the 
Rossler model, in the Lorenz model and the associated Haken model of lasers, in the 
spin-wave turbulence model, in double-diffusive convection models, in three variable 
Lotka-Volterra models, in models of non-linear wave modulation, in the nerve impulse 
propagation model and in models of heterogeneous catalysis, as well as in isothermal 
chemical kinetic models. 

In particular, the following kinetic model, satisfying the mass-action law, has been 
shown to give rise to homoclinic chaos [ 5 ] :  

x = X(dX  - fY - z + g )  

Y =  Y ( X + s Z - I )  (5  1 
2 = (l/&)(X - aZ3 + bZ2 - c Z ) .  

This system presents a homoclinic tangency to a saddle-focus at the parameter values 
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Figure 3. The homoclinic orbit of the chaotic attractor of the kinetic model ( 5 )  at d = 0.51 
and I = 1.339. 

Figure 4. Complex bifurcation sequence of mixed-mode oscillations for the model (6) of the 
Belousov-Zhabotinski reaction proposed by Showalter et a1 (from [8]). 

a = 0.5, b = 3, c = 5, E = 0.01, f = 0.5,  g = 0.6, s = 0.3. Figure 3 shows the homoclinic 
orbit at d = 0.51 and 1 = 1.339, embedded in a chaotic attractor. At homoclinicity, the 
stability eigenvalues of thesaddle-focusare p = 0.081, w = 1.064, A. = -332.4. Note the 
stiffness of the differential equations (5) due to the smallness of parameter E = 0.01. 
This kinetic model provided the first evidence for the possibility of Sil'nikov homoclinic 
chaos and the associated mixed-mode oscillations in far-from-equilibrium chemical 
reactions. 

Complex bifurcation sequences of mixed-mode oscillation and a Sil'nikov homoclinic 
orbit were also observed in a model of the Belousov-Zhabotinski reaction by Showalter 
et a1 [8] who proposed the following kinetic scheme: 

x -t Y - 2P A + Y - X + P  

A + X - 2 W  c + w - x + z  (6) 
2 X - A + P  Z-gY + c 

with A = BrO;, C = Mred, P = HOBr, W = BrO;, X = HBr02,  Y = Br-, Z = Max. 
The bifurcation sequence of mixed-mode oscillation for varying inverse residence times 
(t) is depicted in figure 4. The periodic windows are labelled by single integers n when 
the oscillation is composed of n small peaks followed by a large one, and by pairs of 
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FigureS. Experimental time evolution of the concentration of Ce” in the Belousov-Zhabot- 
inski reaction, showinga typical honioclinicchaos: anoscillatoryinstabilitycauses the growth 
of the small oscillations followed by the homoclinic reinjection (adapted from [9]). 

integers (m, n )  when the oscillation contains m small peaks followed by a large peak 
followed then by n small peaks etc. The  number of small peaks in the pattern increases 
with l / t  until a transition to a stationary behaviour (S) takes place through a complex 
bifurcation sequence very similar t o  those occurring near the homoclinic tangency. 

Experimental evidence of homoclinic chaos was provided by Argoul et a1 [9] in the 
Belousov-Zhabotinski reaction. They observed a homoclinic reinjection mechanism to a 
fixed point of saddle-focus type (see figure 5 ) .  Homoclinic chaos was also experimentally 
observed in heterogeneous catalysis, as well as in electrochemical deposition [lo]. 

We  conclude this section with the remark that homoclinic chaos appears to be a 
mechanism which is shared by a large variety of dynamical systems of interest in chemis- 
try. They have in common the fact that a stationary instability competes with an  oscil- 
latory one  leading to  chaos. 

3. Symmetry breaking and pattern formation 

In  the absence of stirring, far-from-equilibrium patterns can appear in chemically 
reacting systems as a result of diffusion-induced instabilities [ 11. Historically, this mech- 
anism was first proposed by Turing in 1952 as a model of morphogenesis [ll]. 

For a reaction-diffusion system like 

dX/dt = u(X, A )  + DV’X (7 )  
(withX = (XI, . . . , X n ) )  thedissipativestructure emergesfrom theuniformsteady state 
solution, 

u ( X , ,  A) = 0 (8) 
given the boundary conditionsx = X,orn VX = 0. The  linear stability analysis provides 
the critical parameter values where small-amplitude perturbations around Xo become 
unstable: 

x = xo + x(r,  t) 

dx/dt = ((du/dX)(X0) + DV2)x. 

(9) 

(10) 

with x the solution of 
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Figure 6 .  Lines of marginal stability in the plane 
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of the parameter h against the wavenumber k,, 

and for the space-symmetry-breaking instability I 
I starting at (A:, k,, = k,,,L) 

This equation admits solutions of the form 

where 

The characteristic equation is then 

Requiring that Re w, = 0, we find the parameter values of A at marginal stability. Two 
typical cases are depicted in figure 6. 

In both cases a and b shown in the figure, the A against k curves have extrema, Ai 
and Ay, respectively. This means that as A is varied from values corresponding to 
asymptotic stability (below curves a and b) to values leading to instability (above curves 
a and b), the first transition will take place at A: or A: and will therefore dominate the 
behaviour of the system for nearby values of A .  Now in case a the extremum A: occurs 
at k = 0, that is, at a characteristic spatial length 1 = =. This obviously corresponds to a 
space-independent situation; in other words, the dominant mode in the vicinity of the 
first bifurcation point will be a homogeneous one. Nevertheless, this mode will have 
non-trivial properties in the time domain in the sense that, typically, it will have an 
oscillatory behaviour (Im w # 0 in equation (12)). We may refer to this situation as time 
symmetry breaking, since the oscillatory dynamics will now break the invariance of the 
reaction-diffusion equations with respect to the phase of the motion. 

A new possibility arises when Im w = 0 in equation (12), and is depicted in figure 
6(b) .  Here the extremum A: occurs at a non-trivial value k = k,, that is, at a well-defined 
characteristic spatial length 1 = 1,. It follows that the dominant mode in the vicinity 
of the first bifurcation will now be time independent and spatially inhomogeneous. 
Moreover, its charcteristics will be intrinsic, in the sense that they will be determined 
entirely by the system's parameters. We are thus entitled to refer to this situation as 
space symmetry breaking. 

A much studied model, known as the Brusselator, illustrates these phenomena: 

det l ( d u / d X ) ( X , )  - kkD - o~, , , l l  = 0.  (12) 

A - X  (RI)  

X-D (R4) 
In this reaction, species X produces Y in R2 which in turn activates the production of X 
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in R3. Reactions R2 and R3 will be accelerated if the concentration of B increases. In 
rescaled variables, the reaction-diffusion equations are 

aX/at  = A - ( B  + 1)X + X 2  Y + D 1 V 2 X  

aY/dt  = BX - X 2 Y  + D2V2Y.  
(14) 

The stationary state is 

X ,  = A Y ,  = B/A. 

Assuming a time-independent structure (Im w = 0 in equation (12)), fluctuations 
around this uniform state are of the form 

X ( r )  = X, + x ( r )  Y(r)  = Yo + y ( r )  (16a) 

x ( r ) ,  y ( r )  = e -rl‘corr cos 2nr/1, (16b) 

with 

in a one-dimensional system. lCorr is the correlation length of the fluctuation, i.e. the 
distance over which a point-like perturbation will spread. I ,  is the spatial period of the 
oscillations which modulate the decaying envelope of the perturbation. Solving the 
linearized equation (10) allows one to determine these lengths as [ 11 

Icon 1 [ 4 ~ 1 / ( ~ ,  - B)I 1’2 (17a) 

I ,  = 2 4 ~ , 0 ~ ) 1 / 4 / ~ 1 / 2  (17b) 

B ,  = [ l  + A ( D l / D 2 ) ” 2 ] 2 .  ( I s a )  

for the concentration B near and below the critical concentration 

When this critical value is reached, the correlation length, equation (17a), diverges and 
the uniform state becomes unstable with respect to fluctuations of the form (16b), which 
grow and invade the system. This stationary instability may be in competition with an 
oscillatory instability (Im w # 0 in equation (12)) occurring at the critical parameter 
value 

BA = 1 + A 2 .  ( I sh )  

A detailed study of the characteristic e uation (equation (12)) for this model shows 

occurs before the stationary one and a spatio-temporal structure emerges rather than 
the stationary, space-symmetry-breaking Turing structure. In other words, stationary 
patterns may arise as a result of a symmetry-breaking instability of the homogeneous 
state only if the diffusion coefficient of the ‘inhibitor’ Y is sufficiently large compared 
with the diffusion coefficient of the ‘activator’ X. This imposes constraints on both the 
chemical mechanism and on the nature of the medium in which it is embedded. Now, in 
a typical chemical system giving rise to self-organization and chaos, such as the Belousov- 
Zhabotinski reagent in liquid solution, these constraints are not satisfied since the active 
species involved are molecules of comparable sizes and, consequently, of comparable 
diffusion coefficients. This is at the origin of the fact that for a long time most of the 
experimentally observed dissipative structures were spatio-temporal. The two most 
characteristic examples known to date are the target patterns and the spiral waves of 
chemical activity observed in the Belousov-Zhabotinski reagent [ 121. 

thatforD, 2 D20rforD2 > D,and2 + D 1 D 2 / ( D 2  - D l )  > A ,  theoscillatoryinstability 
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Quite recently inhomogeneous states displaying the principal properties of station- 
ary, space-symmetry-breaking Turing structures have been observed thanks to the 
design of new open, unstirred chemical reactors allowing for the development of spatially 
inhomogeneous states while avoiding parasitic hydrodynamic motion [ 131. Figure 7 
depicts the gel reactor designed by De Kepper and co-workers. The two opposite long 
edges are respectively in contact with two chemical reservoirs A and B where the 
concentrations of reactants are kept constant and uniform by appropriate mixing and a 
continuous flow of fresh solutions. The reactants are separated in such a way that neither 
solution A nor solution B is individually reactive: the chemicals diffuse from the edges 
into the gel where the reaction takes place. The typical diffusion time to establish 
stationary concentration profiles across the gel strip is about three hours. The chemical 
system selected is a variant of the chlorite-iodide reaction in which malonic acid is added, 
which is known to exhibit a rich dynamical behaviour. To make the concentration 
changes visible, the gel is loaded with a starch-like colour indicator which does not 
diffuse through the gel. The colour changes from yellow to blue with the change of the 
[Z;]/[Z2] ratio during the redox reaction. The colour pattern is monitored with a video 
camera. 

At the beginning of the experiment, the development of a series of clear and dark 
stripes parallel to the edges reveals the emergence of a concentration pattern in the 
central region of the reactor. Although this pattern is non-trivial, the stripes preserve 
the symmetry imposed by the feed. But over a well defined range of the malonic acid 
concentration in A ,  some of these stripes ultimately break up into lines of periodic spots 
depicted in figure 8. This constitutes a genuine symmetry-breaking phenomenon in the 
direction transverse to the imposed gradient. A similar line of spots parallel to the main 
front has been obtained in a numerical study of the Turing bifurcation of the Brusselator 
in analogous conditions. The pattern can be sustained indefinitely and is actually found 
to remain unchanged for more than 20 h. Moreover, the wavelength I ,  = 0.2 mm seems 
to be really intrinsic and exclusively characterized by non-geometric properties; in 
particular, it is much smaller than any geometric size of the reactor (including thickness) 
by at least one order of magnitude. 

One plausible explanation of the appearance of a stationary pattern in this reactor is 
that small differences in diffusion coefficients (which would be insufficient for the Turing 
instability to occur in a liquid reagent) are enhanced by the diffusion process in the gel. 
This is corroborated by recent theoretical developments on reaction-diffusion processes 
in complex systems [ 141 and highlights the important role played by the host medium in 
chemical dynamics. 

4. Non-linear behaviour: large systems and universal aspects 

We now come to the non-linear behaviour prevailing beyond the instability threshold. In 
a system of small spatial extension the spectrum of admissible valuesof the wavenumber k 
in the linear stability diagram (figure 6) is discrete. As a result, for A slightly above A; or 
I( only the mode corresponding to an admissible k-value close to k,  will be unstable. 
This problem can be handled by classical methods of bifurcation theory or singular 
perturbation theory, which allow one to compute the saturation values of the amplitude 
reached thanks to the non-linear contributions. For instance, in the Brusselator model 
(equations (14)) one obtains, in one space dimension and zero-flux boundary conditions, 
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Figure 7. Gel reactor used in [ 131 for the rcaliz- 
ation o f  stationary spatial pattcrns. Thc yA strip 
is fixed between two Hat plates I m m  apart. Rcac- 
tants are fed through the well-mixcd rcscrvoirs A 
and B. 

Figure 8. Enlargcd imagc of the region of the 
reactor.figurc7.inwhichthcpatternisappearing. 
Distances are in mm. Dark regions correspond to 
rcduccd statcs. clear oncs t o  oxidized states. 

the following result for the space independent patterns for values of B close to R, 
(equation (18a))  [ 151: 

2n ( 4 4 )  = ( B  ;, B c )  ”? (1.;) cos - r 
.Y(d 4 

where U, c , ~ ,  c,. are constant. Depending on the sign of U the bifurcation is supercritical 
or subcritical. 

A remarkable feature, shared by large classes of non-linear systems giving rise to 
instabilities, is that, in the vicinity of the threshold, the dynamicscan be cast in a universal 
normal fo rm [3] featuring a privileged combination of the initial variables to which we 
refer as the order parameter. In the vicinity of a symmetry-breaking instability leading 
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to a Turing structure this parameter is, essentially, the amplitude z of the critical mode, 
and the normal form equation reads 

dz ld t  = (A - A,)z - uz3 .  (19) 

As the length L of the system is increased an increasing number of modes approach 
k ,  (figure 6) and become simultaneously unstable. This results in several coexisting non- 
uniform states which may interchange their stability, resulting in bifurcarion cascades. 
The latter may culminate in an aperiodic regime to which we refer as diffusion-induced 
chaos [16]. The length L of the system (also called the aspect ratio) is thus an important 
bifurcation parameter. A similar situation arises in hydrodynamics, where by varying 
the aspect ratio one may produce a large variety of patterns differing both in wavelength 
and in shape. 

The mathematical description of the above cascading bifurcation phenomena 
becomes more involved. In many cases one can cast the evolution in terms of normal 
forms, which then involve more than one order parameter. As a rule the universality of 
these normal forms can no longer be guaranteed. in the sense that a slight perturbation 
of the dynamics may introduce new types of behaviour not accounted for in the original 
normal form [ 3 ] .  

In the limit of a system of large spatial extension the spectrum of k-values in the 
linear stability diagram (figure 6) becomes continuous. As a result, for any value of A 
above criticality, however small IA - jLcl/Ac might be, an infinite number of coupled 
unstable modes will be switched on. Extensive studies carried out during the last few 
years show that the principal consequence of this new situation is that the order par- 
ameters z satisfying classical normal form equations for small systems (equation (19)) 
are now becoming slowly varying functions of space and time. The concentration vector 
x (cf equation (9)) may thus be written near criticality as 

x ( r ,  t )  = z ( E ~ ~ ,  cot) c y k , ( r )  eitmWk, 
y--J -- fast variation 

where E = (A - Ac)/jLc and the exponents (Y and 
Inserting (20) into equation (7) and solving perturbatively for small E one obtains an 

equation of evolution for z which turns out to be, typically, a Landau-Ginzburg-type 
equation, familiar from phase transition theory, for a complex order parameter [ 171. As 
an example, if the transition to instability occurs through Im c L ) k ,  # 0 the equation for z 
has the form (in suitably scaled variables and parameters) 

are to be determined. 

az /a t  = puz + (I  + icu)V2z - (1 + ig) 1z/’ z .  (21) 

An alternative approach, developed especially by Kuramoto [16,18], is to charac- 
terize the modulation of the patterns by a slowly varying phase y ,  which may be viewed 
as the amplitude of the ‘Goldstone mode’ associated with the symmetry-breaking pattern 
present: 

X(r ,  t> = X c ( W ( 6  9) + b(r,  0 (22) 

where X ,  and b are, respectively, the slowly and rapidly varying parts of X .  Inserting (22) 
into equation (7) one obtains, for various orders of perturbation theory, a set of linear 
inhomogeneous equations, similar to those arising in the Chapman-Enskog solution of 
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the Boltzmann equation. The solvability condition for these equations leads then to a 
closed-form equation for the phase: 

a y l a t  = Q(y ,  v q ,  VI), . . . )  (23a) 

with 

b = b(y ,  vq, . . .). 
The explicit form of (23a) depends on the parameters. For instance, in the range of 
stability of the uniform limit cycle solution one gets a non-linear phase diffusion equation 
[19]: 

D>O 

whereas otherwise one obtains the Kuramoto-Shivashinsky equation, 

d W / d t  = D V 2 q  - D'V4W + P ( V Y ) ~  D < 0, D' > 0. (24b) 

The study of equations (20)-(24) has attracted wide interest over the last few years. 
Extensive numerical simulations have been carried out, which have revealed a number 
of important and unexpected features: 

(i) Beyond the instability of the uniform limit cycle solution, equation (24b) gives 
rise to diffusion-inducedphase turbulence. Although the dimensionality of the attractor 
describing this regime is very high for a large system, it has been shown that there 
exists, nevertheless, a finite-dimensional inertial manifold in which this attractor can be 
embedded without loss of its principal qualitative properties [20].  This type of result still 
remains to be established for fluid dynamical turbulence as described by the Navier- 
Stokes equation. We find here another feature that makes chemical kinetics special 
among other fields of science giving rise to self-organization and chaos. 

(ii) The patterns generated by equations (20)-(24) often exhibit defects [17].  The 
core of the defect is the place where a change of structure occurs, and corresponds in 
two dimensions to a line or to a point. In stationary patterns the point defect may be a 
dislocation in which, say, an extra pair of rolls is inserted in a roll pattern, whereas the 
line defect may delimit regions with different roll orientations. In time-dependent 
patterns the analogue of the dislocation is a spiral wave. All these features have been 
reproduced by numerical solutions of the appropriate equations for the order parameter: 
for instance, the spiral defect is found to be a solution of the complex Landau-Ginzburg 
equation (equation (21)). One has, therefore, an appealing interpretation of the experi- 
ments on chemical waves. There is strong evidence that in the two-dimensional version 
of the Kuramoto-Shivashinski equation (equation (24b)) ,  phase turbulence may be 
mediated by defects. In this respect an elegant theory has been elaborated quite recently 
[21],  which describes defects as objects (analogous to 'quasi-particles') evolving and 
interacting with each other in the effective medium constituted by the phase field. It can 
be expected that this description may lead to a better understanding of defect-mediated 
turbulence, at least in some limiting cases involving, for example, a dilute gas of defects. 

As was the case in small systems, one finds here an even greater multiplicity of 
coexisting solutions. The selection of the most stable pattern is sometimes mediated by 
a variational principle, in particular when the transition to instability occurs through real 
eigenvalues (wk, = 0 in equation (20))  [22]. However, in most cases the equations for 
the order parameters involve non-variational terms, which actually arise as a result of 
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the non-equilibrium constraints driving the dynamics of the system. The presence of 
such terms considerably complicates the problem of selection, which remains largely 
open. 

An unexpected consequence of non-variational effects is the formation of localized 
stable stationary structures, discovered recently by Thual and Fauve in a numerical 
simulation of the complex Landau-Ginzburg equation [23] in the domain of a subcritical 
Hopf bifurcation (in which case equation (21 )  must actually be completed by terms of 
fifth order in 2). In a more chemical context, it has been shown by Dewel and Borckmans 
[24] that similar behaviour may arise in activator-inhibitor systems in which the fast- 
diffusing inhibitor may block the further spread of the activator and confine it in a limited 
region of space. Further aspects of this remarkable stabilization of a ‘droplet’ of a new 
state embedded in a ‘reference’ unstable state have been studied by Hakim et a1 [25] .  

5. Microscopic aspects of chemical instabilities 

As stressed repeatedly throughout the present paper, the very possibility of self-organ- 
ization in chemistry implies the existence of characteristic lengths of intrinsic origin 
over which macroscopic order can be extended. This automatically raises a conceptual 
problem, since chemical reactions result from the action of short-range forces, extending 
over microscopic characteristic lengths. 

In this section we discuss briefly how the onset of macroscopic order is reflected at 
the molecular level. To this end we set up an augmented description of chemical dynamics 
incorporating thermodynamic fluctuations, viewed as a random process. We also con- 
sider alternative sources of randomness, such as the stochastic perturbations that the 
environment inflicts on a real-world system, and examine their role in the mechanism 
of the instability and in the selection of the states above criticality. 

Without going into technical detail we recall here that there are two methods allowing 
one to analyse the effect of fluctuations or external random perturbations [l]: the Master 
equation description in which one incorporates detailed information on the individual 
processes involved in the stochastic dynamics, and the generalized Langeuin equation 
approach in which stochastic effects are accounted for globally by adding random force 
terms in the equations of evolution. One can show that below and up to a small 
neighbourhood of the bifurcation point kc  both formalisms are equivalent and describe 
the augmented dynamics as a first-order Markov process. This allows one to compute 
the spatial correlation function of the fluctuations x(r ,  t )  around the (uniform) reference 
state X o .  The result reads (taking for simplicity the autocorrelation function of a single 
variable x )  

(x(r,  t )x(r ’ ,  t ) )  = XoS(r  - r ’ )  + g(r ,  r ’ )  (25a)  

with [26] 

Here a is a numerical coefficient, J the mass flux across the system, and lCor, a macroscopic 
length having the structure anticipated in the introduction of which equation ( 1 7 4  
constitutes a concrete illustration for the Brusselator model. 
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Figure9. Typical dependence of the amplitude ( a )  and range ( b )  of the correlation function 
g (equation (25b)) of a chemical system as a function of the non-equilibrium constraint. 

Figure 9 depicts the dependence of the amplitude (J) and range (l,,,,) of the cor- 
relation function as a function of the distance from equilibrium, a privileged control 
parameter for most dissipative systems. At equilibrium the correlation function vanishes 
( I  = 0), and equation (25a) reduces to the classical equilibrium result, that the statistics 
of the fluctuations in an ideal system are Poissonian. On the other hand I,,,, remains 
finite at equilibrium but its effect is masked by the vanishing of the amplitude. As 
soon as the system deviates from equilibrium J becomes non-zero and fluctuations of 
macroscopic range are set up in the system. One is, therefore, entitled to assert that non- 
equilibrium is, above all, a correlated state of matter. 

One interesting consequence of correlations of macroscopic range is seen when 
equation (25a) is integrated over a volume element A V  and the variance ( ( 6 ~ ) ~ )  is 
evaluated. One obtains 

implying in particular that locally (AV/V- 0) fluctuations remain Poissonian, whereas 
globally (AV/V+ 1) macroscopic deviations from the Poissonian must be expected. 
This theoretical prediction has recently been verified by microscopic (molecular 
dynamics) simulations of simple, one-variable reaction schemes [27]. It would be very 
interesting to detect this effect in laboratory experiments as well. 
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When the system approaches a bifurcation point the correlation length tends to 
diverge (figure 9(b) ) ,  a property reflecting the intuitive idea that order must indeed 
encompass the entire system and drive it coherently to the new regime arising beyond 
the instability. In reality the situation is much subtler. Firstly, as pointed out in section 
4, in systems of large spatial extension there exist a continuum of interacting modes, 
giving rise to a large variety of patterns; secondly, in the presence of fluctuations these 
different states are mixed and it may happen that the macroscopic order parameter is 
averaged out to zero. 

These questions have been discussed intensively in the literature in recent years. We 
do not enter into the technical detail of these, partly open, questions [22,28] here. 
Instead, we stress the need for microscopic simulations and laboratory experiments on 
bifurcation phenomena and, in particular, the need to assess the role of the fluctuations. 
An encouraging result in this direction has been obtained recently by Mareschal and 
De Wit, who performed a direct Monte Carlo simulation of the Brusselator [29]. Figure 
10 summarizes their main result in the range of parameter values in which the phenom- 
enological description predicts a Hopf bifurcation leading to a limit cycle. We see that 
the microscopic dynamics follows the macroscopic oscillation for several periods, in 
other words, that macroscopic order is not destroyed by the fluctuations. More work is 
necessary on the role of spatial dimensionality, of the size of the system and of the 
distance from bifurcation before it can be claimed that a satisfactory microscopic theory 
of chemical self-organization is available. 
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